

Syllabus: CHM 2045 Chemistry 1

Spring 2026

Welcome to Chemistry 1! Chemistry is a critical and foundational course for all degree programs at Florida Poly. In this course, you will learn fundamental topics, problem-solving techniques and theories that help explain the world as we know it. Chemistry 1 introduces mathematical concepts, units, chemical reactions, thermodynamics and chemical bonding/structure, as well as many other important topics. The course is designed to be fair but challenging.

Success in chemistry requires regular attendance and a consistent work ethic. Taking a serious and professional approach to studying and doing homework is the best way to ensure you meet the learning outcomes for the course. Be familiar with the academic policies outlined in this syllabus and see your instructor with any questions or concerns.

Course Information

• Course Number and Title: CHM 2045 Chemistry 1

Credit Hours: 3 credit hours

Instructor Information

Instructor: Dr. Tracy OlinOffice Location: BARC 2262

• Office Hours: In-person MF 10:00 am – 11:00 am and W 12:00 pm -1:00 pm or by appointment

• Email address: tolin@floridapoly.edu

Course Delivery and Course Description

Delivery Mode: This course will be held in-person at the rooms and days/times given below.

Section 1: IST-1067 MWF 8:00 am – 8:50 am (Dr. Sista) **Section 2**: IST-1067 MWF 9:00 am – 9:50 am (Dr. Cho) **Section 3**: IST-1067 MWF 10:00 am – 10:50 am (Dr. Cho) **Section 4**: IST-1067 MWF 11:00 am – 11:50 am (Dr. Olin) **Section 5**: IST-1067 MWF 12:00 pm – 12:50 pm (Dr. Knorr) **Section 6**: IST-1067 MWF 4:00 pm – 4:50 pm (Dr. Martin)

- Course Website: Official Canvas Course Site
- Official Catalog Course Description: This course is designed for students pursuing careers in the
 sciences or who need a more rigorous presentation of chemical concepts than is offered in an
 introductory course. Students will engage in problem solving and critical thinking while applying
 chemical concepts. Topics will include the principles of chemistry including atomic theory,
 electronic and molecular structure, measurement, stoichiometry, bonding, periodicity,
 thermochemistry, nomenclature, solutions, and the properties of gases.
 - Course Pre-Requisites: N/A
 - o Course Co-Requisites: CHM 2045L Chemistry 1 Laboratory

Communication/Computation Skills Requirement (6A-10.030): No

• Textbook and Required Materials:

- Chemistry: The Central Science 15th edition ISBN: 9780137542758 \$89.99 (18-week access code) with access to MyLab and Mastering.
- Chemistry requires a Texas Instruments TI-30 series calculator (or very similar-must be approved by instructor). No other type of calculator is allowed on exams. It is advised that you obtain this calculator and become familiar with it prior to the first exam. It is also strongly recommended that you bring it to class daily, as there may be in-class work that requires the use of a calculator.
- Access to the course Canvas LMS website. Course resources will be posted here, including any course announcements, changes in the syllabus, etc.
- Access to the University Email System.
- **Communication**: Florida Polytechnic University email is the official method of communication for the University. Students are required to check their email frequently. The subject of your emails must start with "CHM 2045 Section X" followed by the topic. Failure to provide the correct subject may result in ignoring the email or delayed response. Any email received from an address other than the one with the floridapoly.edu domain will not be replied to. Emails will typically be answered within 24-48 hours, Monday-Friday.

Course Objectives and Outcomes

- Course Objective: This course (through lectures and problem-solving) is intended to:
 - Introduce key chemical concepts such as atomic structure, bonding, stoichiometry, and thermochemistry.
 - Develop quantitative and analytical reasoning skills for solving chemical problems.
 - o **Connect** chemical principles to experimental design and real-world applications.
- Student Learning Outcomes: Upon completion of the course, students should be able to:
 - o **Apply** chemical laws and quantitative relationships to solve problems.
 - Explain and predict chemical behavior using atomic and molecular theories.
 - Interpret and connect lecture concepts to laboratory experimentation and data analysis.
 - Communicate chemical reasoning clearly and effectively.
 - o **Acquire** and **apply** new chemical knowledge using appropriate learning strategies.

• Alignment with Program Outcomes: Program Learning Outcomes and General Education Competencies may be found in the Academic Catalog (http://catalog.floridapoly.edu/).

Course Learning Outcome	Learning Level	Program Learning Outcome (ABET)
Apply chemical laws and	Apply, Analyze;	(1) Identify, formulate, and solve
quantitative relationships to	Execute;	complex engineering problems using
solve problems.	Implement	principles of engineering, science,
	Predicting	and mathematics.
	Compare and	
	contrast	
Explain and predict chemical	Understand;	(1) Identify, formulate, and solve
behavior using atomic and	Interpret;	complex engineering problems using
molecular theories.	Compare	principles of engineering, science,
		and mathematics.
Interpret and connect lecture	Apply; Evaluate;	(6) Develop and conduct
concepts to laboratory	Integrate	appropriate experimentation,
experimentation and data		analyze and interpret data, and use
analysis.		engineering judgment to draw
		conclusions.
Communicate chemical	Understand;	(3) Communicate effectively with a
reasoning clearly and	Create; Explain;	range of audiences.
effectively.	Compose	
Acquire and apply new	Understand;	(7) Acquire and apply new
chemical knowledge using	Apply; Reflect	knowledge as needed, using
appropriate learning strategies.		appropriate learning strategies.

Course Schedule: Tentative Weekly Schedule:

Week	Topics	Sections and HW
Week 1	Syllabus, Concepts of matter : Basic definitions,	Ch 1.2-1.5
1/12 – 1/16	measurements and units, uncertainty and significant figures.	CIT 1.2 1.5
1/19	Martin Luther King Jr. Holiday – No Classes on 1/19/26	
Week 2	Problem-Solving- Dimensional analysis, Atoms and Elements :	Ch 1.6, 2.1-2.3
1/20 – 1/23	Atomic theories, structure of atoms, atomic symbols,	CIT 1.0, 2.1 2.3
	Isotopes, average atomic mass, The periodic table, Molecules	2.4-2.7
Week 3	and Compounds: ions, ionic formulas, polyatomic ions,	2.1 2.7
1/26 – 1/30	covalent bonds	HW #1 due 1/26
	Naming compounds: ionic & molecular. Chemical Equations	2.8, 3.1-3.2
Week 4	and Chemical Quantities: Balancing chemical equations,	
2/2 – 2/6	types of chemical reactions	
	EXAM #1 – Friday, February 6 – in class	HW #2 due 2/2
M	Formula masses, The mole concept, molar mass, percent	3.3-3.6
Week 5	composition, Empirical formulas. Stoichiometry : Quantitative	
2/9 – 2/13	Info from Balanced Equations	HW #3 due 2/9
Mask C	Limiting reactants and reaction yields. Introduction to	3.6-3.7, 4.1, 4.5
Week 6	Aqueous Reactions: Dissociation, Electrolytes, Molarity,	
2/16 – 2/20	Dilution	HW #4 due 2/16
Week 7	Precipitation reactions, solubility rules, Net ionic equations.	4.2-4.3
	Aqueous solutions: Acid-Base reactions, neutralization,	
2/23 – 2/27	titrations	HW #5 due 2/23
Week 8	Redox reactions, activity series. Properties of gases: gas laws,	4.4, 10.1-10.5
3/2 – 3/6	ideal gas law, Gas mixtures/partial pressures	10.4-10.6
3/2 - 3/0	Exam #2 – Monday, March 2 - common	HW #6 due 3/2
Week 9	Kinetic-Molecular theory, Thermochemistry : Energy, heat	10.7, 5.1-5.4
3/9 – 3/13	transfers, Quantifying Heat and Work, Enthalpy, Enthalpy of	
	reaction	HW #7 due 3/9
Week 10	Spring Break Week – No Classes	
3/16 – 3/20	, -	555764
	Heat capacity/specific heat, Calorimetry-measuring ΔH _{rxn} ,	5.5-5.7, 6.1
Week 11	Hess's law, Standard Enthalpies of Formation, bond	
3/23 – 3/27	enthalpies, Intro to Quantum Mechanical Model of Atoms,	104/ #0 doc 2/22
	EM radiation, frequency/wavelength,	HW #8 due 3/23
Week 12	Photoelectric effect, Atomic emission, Line spectra, Bohr	6.2-6.7
3/30 – 4/3	model, Uncertainty principle, atomic orbitals,	HW #9 due 3/30
	Exam #3 – Wednesday, April 1 – in class Electronic structure of atoms, quantum numbers and electron	6.8-6.9, 8.1-8.3
Week 13	configurations, Chemical Bonding I -The Lewis Model: The	0.0-0.3, 0.1-0.3
4/6 – 4/10	octet rule, Ionic bonding, covalent bonding,	HW #10 due 4/6
	Electronegativity and Bond polarity. Lewis structures, Formal	8.3-8.8
Week 14	charge, Resonance structures, Octet exceptions, bond	HW #11 due 4/13
4/13 – 4/17	strengths and bond lengths,	1100 mil due 4/13
	VSPER model - effect of lone pairs, Molecular polarity,	9.1-9.3, 7.2-7.5
Week 15	Periodic table and Effective nuclear charge	J.± J.J, 1.2 1.J
4/20 – 4/24	Exam #4 – Monday, April 20 – common	HW #12 due 4/20
Week 16	Periodic trends: atomic size, ionization energy and electron	Finish Chapter7
4/27	affinity, electronegativity	HW #13 due 4/27
4/29 – 5/1	Reading Days – No Classes 4/29 – 5/1	
	Monday – Friday 5/4 – 5/8	
FINAL EXAMS	Final Exam Day and Time TBD by the University	
	That Exam Day and Time 100 by the Oniversity	1

Course Policies

Please Note: Changes in this syllabus, assignments, exams dates, etc. may be modified as deemed appropriate. All changes will be announced in class and/or in Canvas Announcements.

Late Work/Make-up work

Make-up exams will be given only in circumstances with a documented university-approved excuse. Any exceptions will be dealt with on a case-by-case basis. If you know in advance that you will miss an exam because you are participating in a college-sponsored activity, inform your instructor before the exam and provide them with documentation. See the <u>Student Attendance Policy</u> for more information.

Homework answers are posted the day after they are due, so for this reason there is no late homework accepted. The lowest homework grade will be dropped at the end of the semester, so if you happen to miss one, this will be your dropped score. You will have roughly 4-5 days to complete the homework once posted. It is strongly encouraged that students do not wait until the last possible minute to complete the assignments in case there is a technical or other issue.

Grading Scale

Grade	Α	B+	В	B-	C+	С	D	F
Percentage	90%	87%	83%	80%	77%	70%	60%	< 60%
GPA	4.0	3.33	3.0	2.67	2.33	2.0	1.0	0.0

Assignment/Evaluation Methods

Assignment/Evaluation Methods:

Attendance:	5%
Homework (lowest grade dropped):	35%
Exams (four at 10% each)	40%
Final Exam	20%
Total	100%

Attendance:

- Students in **face-to-face** courses are expected to attend all of their scheduled University classes and to satisfy all academic objectives.
- Attendance will be taken at the beginning of each class period using A+ Attendance through
 Canvas. It is the student's responsibility to be sure to enter the code each lecture period. If the
 system is not working properly, let the professor know before or after class so your presence
 can be documented. Recall, attendance and participation are part of the overall grade in this
 course. You will lose part of the 5% attendance grade for each unexcused absence.
- If you forget to enter the code, the instructor will enter it for you once. After this, you will be counted as absent
- Bonus questions and/or in-class work may be given out during lecture time. If a student is absent on a day that an such an assignment is given, they will not be awarded any points.
- For university-approved absences, it is the student's responsibility to contact the instructor promptly, or in advance when possible. Unexcused absences will be handled on a case-by-case basis.

- The University policies can be found here:
 https://catalog.floridapoly.edu/content.php?catoid=24&navoid=1408#attendance
- Note: Falsifying attendance for yourself or for another student is an act of academic dishonesty and is considered a violation of the university's academic integrity policy.
- Exceptions to any attendance requirements may be made on a case-by-case basis.

In-class Work and Participation:

- Students are expected to participate in the classroom experience. In-class activities and group work may be done and will count towards 10% part of your overall grade.
- The use of earbuds/headphones during class is specifically not allowed and students who
 engage in this behavior may be asked to leave the class for the day (noting exceptions for
 authorized accommodations).
- Students who routinely do not bring materials to class that are required for participation, will not be given credit for class attendance and participation.

Homework:

- The weekly homework will be through Mastering Chemistry. Access will need to be purchased through the publisher or Bookstore.
- There will be a homework assignment due each Monday by 11:59 pm (see schedule below for all due dates, if there is no class on a Monday, the due date is pushed to Tuesday).
- The assignments will open on the Thursday prior to when they are due. Please see the "Late work" policy for more information on late homework.
- If you need assistance, just ask your instructor. If you are uncertain on what is expected at any time, please ask your instructor.

Exams:

- There are 3 exams and a final exam in this course. The first and third exam will be 50-minute exams taken during your scheduled lecture time. The midterm (second) exam will be a 90-minute exam and taken as a common exam in the evening.
- All exam dates are listed in the course schedule. Should a situation arise and anything need to be changed, you will be notified and you should refer to the Academic Calendar website for the most up-to-date exam schedules for midterms and finals.
- Exam dates will also be announced on Canvas one week prior to the scheduled event, along with a study guide, formula sheet and anything else pertinent to the exam.
- You must bring a calculator to every exam.
- Please note: no electronic devices, besides an approved calculator, are permitted on exams. All
 cell phones and smart watches/other devices should be powered off and put away so that they
 are inaccessible during the exam. If a student has a phone or other smart device accessible
 during an exam, they will be recommended for an academic integrity investigation and will
 receive a zero on the exam.
- The date for the final exam will be announced once scheduled by the registrar. As with other exams, an announcement will be made with all information pertinent to the final.
- In order to pass this class, the final exam must be taken.
- The final exam grade may replace the lowest exam grade if it benefits the overall grade in the course. Note: All exams are required. **The final will not replace a 0 from a missed exam**.

Please note: If you wish to dispute a score for an assignment or exam, you must describe the nature of the dispute in writing and communicate it through an email no later than one week after the due date/posting the scores of the assignment or the exam. Scores outside of this window will be considered final.

Grades on Canvas

Grades will be posted to Canvas for reference only, and students should make sure they are recorded correctly. However, there is no guarantee that the percentages or projected grades provided in Canvas are correct. The instructor will calculate final percentages and will determine final grades regardless of Canvas calculations.

University Policies

Reasonable Accommodations

The University is committed to ensuring equal access to all educational opportunities. The Office of Disability Services (ODS), facilitates reasonable accommodations for students with disabilities and documented eligibility. It is the student's responsibility to self-identify as a student with disabilities and register with ODS to request accommodations. If you have already registered with ODS, please ensure that you have requested an accommodation letter for this course through the ODS student portal, and communicate with your instructor about your approved accommodations as soon as possible. Arrangements for testing accommodations must be made in advance. Accommodations are not retroactive. If you are not registered with ODS but believe you have a temporary health condition or permanent disability requiring an accommodation, please contact ODS as soon as possible: DisabilityServices@floridapoly.edu; (863) 874-8770; www.floridapoly.edu/disability.

Accommodations for Religious Observances, Practices and Beliefs

The University will reasonably accommodate the religious observances, practices, and beliefs of individuals in regard to admissions, class attendance, and the scheduling of examinations and work assignments. (See <u>University Policy</u>.)

Title IX

Florida Polytechnic University is committed to ensuring a safe, productive learning environment on our campus that prohibits sex discrimination and sexual misconduct, including sexual harassment, sexual assault, dating violence, domestic violence and stalking. Resources are available if you or someone you know needs assistance. Any faculty or staff member you speak to is required to report the incident to the Title IX Coordinator. Please know, however, that your information will be kept private to the greatest extent possible. You will not be required to share your experience. If you want to speak to someone who is permitted to keep your disclosure confidential, please seek assistance from the Florida Polytechnic University Ombuds Office, BayCare's Student Assistance Program, 1-800-878-5470 and locally within the community at Peace River Center, 863-413-2707 (24-hour hotline) or 863-413-2708 to schedule an appointment. The Title IX Coordinator is available for any questions to discuss resources and options available.

Academic Integrity

Violations of <u>academic integrity regulation</u> include actions such as cheating, plagiarism, use of unauthorized resources (including but not limited to use of Artificial Intelligence tools), illegal use of intellectual property, and inappropriately aiding other students. Such actions undermine the central mission of the university and negatively impact the value of your Florida Poly degree. Suspected violations will be fully investigated, possibly resulting in sanctions up to and including expulsion from the university.

Recording Lectures

Students may, without prior notice, record video or audio of a class lecture for a class in which the student is enrolled for their own personal educational use. Recordings may not be used as a substitute for class participation or class attendance. Recordings may not be published or shared in any way, either intentionally or accidentally, without the written consent of the faculty member. Failure to adhere to these requirements is a violation of state law (subject to civil penalty) and the student code of conduct (subject to disciplinary action). Recording class activities including, but not limited to, lab sessions, student presentations (whether individually or part of a group), class discussion (except when incidental to and incorporated within a class lecture), and invited guest speakers is **prohibited**.

Academic Support Resources

- **Library**: Students can access the Florida Polytechnic University Library through the University website and <u>Canvas</u>, on and off campus. Students may direct questions to <u>library@floridapoly.edu</u>.
- Tutoring and Learning Center: The Tutoring and Learning Center (The TLC) provides tutoring to all Florida Poly
 students who may need additional academic support. The TLC is staffed by students who have excelled in the courses
 they tutor. They offer support by reviewing concepts and materials from class, clarifying points of confusion and
 providing assistance with learning strategies. While the focus of TLC is to provide support to students in freshmanlevel courses, upper-level courses are also tutored at the Center. The TLC is located in the IST Commons (second
 floor).
 - Knack Tutoring: Students looking for additional assistance outside of the classroom are advised to consider
 working with a peer tutor through Knack. Florida Polytechnic University has partnered with Knack to
 provide students with access to verified peer tutors who have previously aced this course. To view available
 tutors, visit floridapoly.joinknack.com and sign in with your student account.

Syllabus: CHM 2045L Chemistry 1 Laboratory

Spring 2026

Welcome to Chemistry 1 Lab! Chemistry is a critical and foundational course for all degree programs at Florida Poly. In this course, you will learn fundamental laboratory techniques, problem-solving skills and applications that help explain the world as we know it. Chemistry 1 lab introduces laboratory safety, glassware and uncertainty, titrations, as well as many other important topics. The course is designed to be fair but challenging.

Success in chemistry lab requires regular attendance and a consistent work ethic. Taking a serious and professional approach to attending and safely completing all laboratory experiments is the best way to ensure you meet the learning outcomes for the course. Be familiar with the academic policies outlined in this syllabus and see your instructor with any questions or concerns.

Course Information

Course Number and Title: CHM 2045L Chemistry 1 Laboratory

• Credit Hours: 1 credit hours

Instructor Information

Instructor: Dr. Tracy Olin
 Email: tolin@floridapoly.edu
 Office Location: BARC 2262

Office Hours: In-person MF 10:00 am – 11:00 am and W 12:00 pm -1:00 pm or by appointment

Course Delivery and Course Description

 Delivery Mode: This course will be held face-to-face (in-person) at the rooms, days and times given below.

Section 2: BARC 2207, Tuesday 1:00 pm – 2:50 pm (Dr. Olin)
Section 3: BARC 2209, Tuesday 10:00 am – 11:50 am (Dr. Martin)
Section 4: BARC 2207, Wednesday 1:00 pm – 2:50 am (Dr. Olin)
Section 5: BARC 2207, Friday 3:00 pm – 4:50 pm (Dr. Sista)
Section 6: BARC 2207, Thursday 8:00 am – 8:50 am (Dr. Sista)
Section 7: BARC 2209, Tuesday 1:00 pm – 2:50 pm (Dr. Martin)
Section 8: BARC 2209, Wednesday 1:00 pm – 2:50 pm (Dr. Martin)
Section 9: BARC 2207, Wednesday 10:00 pm – 11:50 pm (Dr. Kaushik)
Section 10: BARC 2209, Wednesday 10:00 am – 11:50 am (Dr. Martin)
Section 11: BARC 2209, Friday 1:00 pm – 2:50 pm (Dr. Olin)
Section 12: BARC 2207, Friday 8:00 am – 9:50 am (Dr. Martin)

Official Catalog Course Description: Students will participate in laboratory experiments designed to reflect the topics presented in <u>CHM 2045</u>.

Gordon Rule (6A-10.030): Yes: This course meets communication/writing-intensive requirements (W)

Co-Requisite: CHM 2045 - Chemistry 1

Required Equipment and Material:

- Safety goggles and a lab coat (you can purchase these through the bookstore or via the links provided on the course Canvas site).
- Access to the experiment files on Canvas and a printer.
 - Each week you must print the procedure pages and datasheets for the correct experiment from the Canvas and bring them to lab. You may use a laptop or tablet for data collection in the lab but be aware that they are subject to the conditions of the chemistry lab, which tend to not non-ideal for electronics.
 - Please note that you must collect all data on the printed datasheets that are in the experiment file on Canvas. Using scratch paper or notebook paper will not be accepted.
 - All pre-lab, data and post-lab pages will be uploaded to Canvas for grading. You
 will need to upload them as a pdf file. If you are unsure how to convert photo
 files to pdf, please see Canvas for suggested tutorials.
- Chemistry requires a Texas Instruments TI-30 series calculator (or a very similar-must be approved by instructor). No other type of calculator is allowed on exams. It is also strongly recommended that you bring it to every lab period, as there may be in-class work that requires the use of a calculator.
- Access to the University Email System

Communication: Florida Polytechnic University email is the official method of communication for the University. Students are required to check their email frequently. The subject of your emails must start with "CHM 2045L Section X" followed by the topic. Failure to provide the correct subject will result in ignoring the email. Any email received from an address other than the one with the floridapoly.edu domain will not be replied to. Emails will typically be answered within 24-48 hours, Monday-Friday.

Course Objectives and Outcomes

- Course Objective: To build a solid foundation of chemistry laboratory safety and techniques that can also be applied to other STEM courses, as well as upper-level chemistry courses.
- Course Learning Outcomes:
 - o **Utilize** scientific equipment and glassware safely and accurately.
 - o Make, record, and report experimental observations.
 - o Create and analyze Excel-based graphs of experimental data.
 - o **Observe** and **interpret** chemical reactions.
 - Effectively **communicate** experimental information in a scientific writing style.

 Alignment with Program Outcomes: Program Learning Outcomes and General Education Competencies may be found in the Academic Catalog (http://catalog.floridapoly.edu/).

Course Learning Outcome	Learning Level	Program Learning Outcome (ABET)
Apply chemical laws and quantitative relationships to solve problems.	Apply, Analyze; Execute; Implement Predicting Compare and contrast	(1) Identify, formulate, and solve complex engineering problems using principles of engineering, science, and mathematics.
Explain and predict chemical behavior using atomic and molecular theories. Interpret and connect lecture concepts to laboratory experimentation and data analysis.	Understand; Interpret; Compare Apply; Evaluate; Integrate	 (1) Identify, formulate, and solve complex engineering problems using principles of engineering, science, and mathematics. (6) Develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
Communicate chemical reasoning clearly and effectively. Acquire and apply new	Understand; Create; Explain; Compose Understand;	(3) Communicate effectively with a range of audiences.(7) Acquire and apply new
chemical knowledge using appropriate learning strategies.	Apply; Reflect	knowledge as needed, using appropriate learning strategies.

Schedule of Experiments – Tentative

-	eriments – Tentativ Title of	Lab # in	Assignment
Week	Experiment	Canvas	(due before the beginning of lab)
Week 1	Syllabus and		*Get access to the online lab materials and lab coat and
1/12 – 1/16	check-in		goggles
			-Complete the online Safety Training and Safety Quiz prior
_	Mandatory		to the start of lab on Lab 3
Week 2	Safety Training	Exp 0	***Students may not work in the laboratory until they
1/20 – 1/23	and Online	-//0	have viewed the Lab Safety video and passed (≥80%) the
	Quiz		Safety Quiz***
			-Bring the Signed copy of the Lab Safety agreement and
_	Volumetric		submit it in person (hard copy) before the start of your lab
Week 3	Glassware and	Exp 1	period
1/26 – 1/30	Uncertainty		-Submit the pre-lab for the Glassware and uncertainty
	,		experiment before the start of your lab period
			-Submit Data/post-lab for Glassware and uncertainty
Week 4	Density of		experiment before the start of your lab period
2/2 – 2/6	Solids and	Exp 2	-Submit the pre-lab for Density experiment before the start
2,2 2,0	Liquids		of your lab period
Week 5			,
2/9 – 2/13		No	Labs this Week (2/10 is Career Day)
			-Submit Data/post-lab for the density experiment before
Week 6	Chemical	Exp 3	the start of your lab period
2/16 – 2/20	Nomenclature	LAP 3	-Submit the pre-lab for Chemical Nomenclature experiment
			before the start of your lab period
	Limiting		-Submit Data/post-lab for the chemical nomenclature
Week 7	Reactant and	Exp 4	experiment before the start of your lab period
2/23 – 2/27	Percent Yield	_	-Submit the pre-lab for Limiting Reactant and Theoretical
			Yield experiment before the start of your lab period
_	Preparing Stock		-Submit Data/post-lab for the limiting reactant experiment
Week 8	Solution and	Exp 5	before the start of your lab period
3/2 – 3/6	Making	_/\p 0	-Submit the pre-lab for Preparing Stock Solution and
	Dilutions		Dilution experiment before the start of your lab period
_	Solubility and		-Submit Data/post-lab Limiting Reactant and Theoretical
Week 9	Reactions in	Exp 6	Yield experiment before the start of your lab period
3/9 – 3/13	Aq. Solutions	_/\p 0	-Submit the pre-lab Reactions & Solubility experiment
			before the start of your lab period
Week 10 3/16 – 3/20			Spring Break Week – No Classes
3, 10 3, 20			-Submit Data/post-lab for Reactions & Solubility experiment
Week 11	Acid-Base	F 7	before the start of your lab period
3/23 – 3/27	Titrations	Exp 7	-Submit the pre-lab for the Acid-Base Titration experiment
			before the start of your lab period
			-Submit Data/post-lab for Titration experiment before the
Week 12	Molar Volume	Exp 8	start of your lab period
3/30 – 4/3	of CO ₂	-//2 0	-Submit the pre-lab for the Determination of Molar Mass
			experiment before the start of your lab period
			-Submit Data/post-lab for Determination of Molar Mass
Week 13	Calorimetry and	_	experiment before the start of your lab period
4/6 – 4/10	Hess's Law	Exp 9	
., 5 ., 10			-Submit the pre-lab for the Calorimetry experiment before
			the start of your lab period

Week 14 4/13 – 4/17	VSEPR Theory	Exp 10	- Submit Data/post-lab the Calorimetry experiment before the start of your lab period -Submit the pre-lab for VSEPR experiment before the start of your lab period
Week 15 4/20 – 4/24	Lab Final Quiz		-Submit Data/post-lab for VSEPR experiment before the start of your lab period
Week 16 4/27			NO LABS THIS WEEK

Course Policies

Please Note: Changes in this syllabus, assignments, exams dates, etc. may be modified as deemed appropriate. All changes will be announced in class and/or in Canvas Announcements.

Late Work/Make-up work

Pre-lab assignment submissions that are after the start of the lab period are considered late. The purpose of a pre-lab assignment is to make sure you have read over the procedure and can safely and effectively complete the experiment. For this reason, if they are submitted late, significant points will be deducted. If they are submitted within 24 hours, 30% of the total grade may be awarded (e.g. you could get a maximum of 3/10 on that pre-lab assignment). After a prelab is more than 24 hours late, no credit will be given.

Lab Data and Post-lab assignments submissions that are after the start of the lab period are considered late. They will have a 10% grade penalty per meeting day they are late (e.g., If your assignment is 4 meeting days late, the maximum you can earn is 60% for that lab assignment). Anything submitted after the start of the lab period when they were due is considered a meeting day late. After four meeting days have passed, a score of zero will be given for the respective lab due to non-submission.

All assignments MUST BE SUBMITTED for grading PRIOR to the scheduled day/time for the final exam/quiz.

Make-up work may be given for excused absences and will be dealt with on a case-by-case basis. If you miss a lab day because you are participating in a college-sponsored activity, inform your instructor before the day to be missed and provide them with documentation.

Participation

Students are expected to participate in the classroom experience. The use of earbuds/headphones during class is specifically not allowed and students who engage in this behavior may be asked to leave the class for the day (noting exceptions for authorized accommodations). In addition, students who routinely do not bring materials to class that are required for participation will not be given credit for class attendance and participation, and if this becomes a pattern of behavior, may be asked to leave the class for the day. Persistent problems with participation may result in a code of conduct referral.

Grading Scale

Grade	Α	B+	В	B-	C+	С	D	F
Percentage	90%	87%	83%	80%	77%	70%	60%	< 60%
GPA	4.0	3.33	3.0	2.67	2.33	2.0	1.0	0.0

Grades on Canvas

- Grades will be posted to Canvas for reference only, and students should make sure they are
 recorded correctly. However, there is no guarantee that the percentages or projected grades
 provided in Canvas are correct. The instructor will calculate final percentages and will
 determine final grades regardless of Canvas calculations.
- If you wish to dispute a score for an assignment or exam, you must describe the nature of the
 dispute in writing and communicate it through an email no later than one week after the due
 date/posting the scores of the assignment or the exam. Scores outside of this window will be
 considered final.

Assignment/Evaluation Methods

Assignment/Evaluation Methods:

Attendance	5%
Lab Experiments (Best 9 of 10, 9% each)	81%
Final Exam	14%
Total	100%

- Attendance: Students in face-to-face courses are expected to attend all of their scheduled University classes and to satisfy all academic objectives.
 - Laboratory meets only 12 times in a semester. Make it a priority to be present for all lab
 periods. The point of the laboratory is for you to learn how to perform measurements
 and observations using standard chemistry apparatus and instrumentation. The
 laboratory is the only place where you can learn this. As such, attendance in the
 laboratory is mandatory and will count towards part of your overall grade.
 - Attendance will be taken at the beginning of each class period by the instructor. It is
 the student's responsibility to be present when roll call is taken, within the first 10
 minutes of lab.
 - Please be sure to be on time to EVERY CLASS PERIOD. You will lose part of the 5% attendance grade for each unexcused absence.
 - Important safety information may be covered in the first 5-10 minutes of each lab
 period. For that reason, if students come after the start time of lab, more than 10
 minutes late, they will not be permitted to perform that weeks lab and will be counted
 as absent.
 - Note: Falsifying attendance for yourself or for another student is an act of academic dishonesty and is considered a violation of the university's academic integrity policy.
 - Exceptions to any attendance requirements may be made on a case-by-case basis.
- **Final Exam**: You are required to take the final exam in order to pass the class. It will be during the last week of lab (see schedule for dates). It is taken on Canvas, and will be open during your scheduled lab time. You will have 60 minutes to complete the exam in the time period it is open. More information will be given out a week prior to the final exam.

Lab Experiment Handouts: <u>All experiment procedures and assignments will be accessed and submitted on Canvas.</u>

- Students will work in pairs for all lab experiments. Be sure to write you lab partners name at the top of your handout pages.
- Students should make every attempt to keep the same lab partner for the entire semester. If there is an issue, please speak with your instructor.
- The experimental handouts are posted on Canvas. In the experiment file there are the
 following sections: background, procedure, pre-lab and post-lab. You will need to print these
 out prior to coming to lab each week (or have them accessible on a tablet that you feel
 comfortable bringing to the lab).
- Students are expected to complete Pre-lab and Post-lab assignments for each experiment,
 which are included in each experiment handout on Canvas. These assignments should be
 treated as individual assignments representing your own work. In other words, your data may
 be from the same set or "identical", however, the way you summarize or explain concepts in
 your post-lab exercises cannot be the same or identical, as it is considered unethical. Any
 violation of the University's Academic Integrity policy may result in a failing grade for the
 course and dismissal from the University.
- The pre- and post-lab assignments need to be uploaded prior to their due date and time under the respective assignment on Canvas.

BEFORE COMING TO LAB:

- Refer to the class schedule to ensure that you are preparing for the correct experiment.
 Thoroughly read the experimental discussion and procedure.
- Make certain you have proper lab attire. If you show up with improper lab attire, you will have to leave the lab, and will be given an unexcused absence.
- Be sure to come ON TIME. After 5 minutes past the start time of the lab, you will not be permitted to complete that days experiment.

Complete the Pre-lab Assignment:

- Pre-lab Assignments require a basic understanding of the chemical principles being observed in each experiment. Answering these questions requires you to read the background material provided in the first pages of the experiment. Additionally, it may be helpful to read relevant material in your lecture textbook or outside sources.
 - The pre-Lab ASSIGNMENT for the experiment is due before the beginning of the lab period for that experiment (canvas assignment)
 - Full name, date and section number must be written clearly.
 - All work of the pre-lab should be clear, presentable, and handwritten in ink.
 - All calculations must be written in the spaces provided and answers reported to the correct number of significant figures. Your work must be clearly shown to receive full credit for the answers.
- The pre-lab portion of the lab handout contains a space to write the purpose of the experiment, and a few questions that you must answer to make sure you have thoroughly read over the procedure.

- The purpose section is to be written in your own words and not copied from the procedure or any online source. It should be a few sentences explaining why you are doing the experiment (what the goal is) and how it will be accomplished. Do not use first person when writing scientifically.
 - You must upload the Pre-lab work to the respective assignment in canvas before the start of your lab period. Anything submitted after the start of the lab period is considered late and will be graded accordingly (see Late Work section).

DURING THE LAB CLASS:

Experimental work and Data collection:

- A pre-lab discussion (if needed) is provided at the beginning of the lab period, which includes any changes or modifications in the lab procedure, special safety instructions, and tips which may make your experiment run more smoothly. Please be on time.
- Record the unknown number (if applicable), begin the experiment, recording all the data <u>IN INK</u>
 in your data pages from the lab manual or handout using correct units, proper significant digits,
 etc.
- Full name, date and section number must be written clearly on the data pages.
- All data must be recorded <u>in ink</u> (no pencils or correcting tape). Data recorded in pencil and/or with correction tape will not be graded and you will not receive any points for the data page.
- Do not write data on a separate sheet of paper. Scrap paper is not acceptable for recorded data.
- Have you instructor sign the signature box on your data sheets before leaving the lab. This verifies the data you collected and you will lose points if your data is not signed.

AFTER THE EXPERIMENT IS COMPLETED:

Data and Calculations:

- A sample calculation should be shown for each type of calculation performed in the
 experiment. Calculations may be shown on the Data Page if there is space available or on a
 separate sheet of paper. All measurements must include units and be clearly labeled.
- All calculations must be done with detailed work <u>in ink</u> (no pencils or correcting tape) and the answers must be reported with proper significant digits.
- Submit the data pages for that experiment showing all data and detailed calculations, etc. to the respective assignment in canvas by the due date (typically the next lab period).

Post-Lab Questions and Conclusion:

- The post-lab section of the lab handout contains calculations and questions that pertain to the experiment, as well as a conclusions sections for you to discuss the outcome of the experiment.
- This assignment will be due before the start of the next lab period after the experiment is completed (see schedule for all due dates) and will need to be uploaded to the correct assignment on Canvas.
- All work of the post-lab should be clear, presentable, and handwritten in ink.
- All calculations must be written in the spaces provided and answers reported to the correct number of significant figures. Your work must be clearly shown to receive full credit for the answers.
- The conclusions section is to be written in your own words and not copied from your lab

partner. This portion of the handout is where you write a conclusion about your experiment. In a paragraph or so, you want to state any values that you found, any correlations or comparison to known values, identify an unknown, discuss any errors, etc. Also, complete any necessary calculations and answer all post-lab questions asked

 You must upload the signed Data Sheets and Post-lab work to the respective assignment in canvas before the start of the lab period it is due. See schedule for all due dates. Anything submitted after the start of the lab period is considered late and will be graded accordingly (see Late Work section).

General rubric for Lab Experiment Grades: (specific rubrics for each experiment is on Canvas)

ipation/following lab rules	
ab assignments questions answered with full work	90 points
collected/calculations/graphs etc.	
ab	10 points

<u>PLEASE NOTE</u>: points may be redistributed between the data, and post lab sections based on the work involved.

Lab Coats and Goggles

The detailed safety rules will be discussed during the first lab periods. The safety protocol must be followed at all times in the lab. If students are not following the safety policies, they will not be permitted in the lab and will thus receive a zero for that lab experiment. The Lab coat and goggle policy can be found on the Canvas course page. Please be sure to read over it, understand it, and ask your instructor any questions you may have.

Safety Rules:

- 1. Food and drinks are not allowed into the lab at any time.
- 2. Dress Code: Required
 - Closed Toes Shoes
 - Long pants/skirts
 - Shirts or tops should have sleeves and should cover the torso.
 - Long hair tied back.
- 3. Safety Goggles: You must wear goggles over your eyes, not on your forehead or around your neck. You will lose 1 point from your laboratory work each time the instructor needs to remind you to put on the safety goggles.

University Policies

Reasonable Accommodations

The University is committed to ensuring equal access to all educational opportunities. The Office of Disability Services (ODS), facilitates reasonable accommodations for students with disabilities and documented eligibility. It is the student's responsibility to self-identify as a student with disabilities and

^{**}More information on safety will be covered in the lab experiment 0.

register with ODS to request accommodations. If you have already registered with ODS, please ensure that you have requested an accommodation letter for this course through the ODS student portal, and communicate with your instructor about your approved accommodations as soon as possible. Arrangements for testing accommodations must be made in advance. Accommodations are not retroactive. If you are not registered with ODS but believe you have a temporary health condition or permanent disability requiring an accommodation, please contact ODS as soon as possible: DisabilityServices@floridapoly.edu; (863) 874-8770; www.floridapoly.edy/disability.

Accommodations for Religious Observances, Practices and Beliefs

The University will reasonably accommodate the religious observances, practices, and beliefs of individuals in regard to admissions, class attendance, and the scheduling of examinations and work assignments. (See <u>University Policy</u>.)

Title IX

Florida Polytechnic University is committed to ensuring a safe, productive learning environment on our campus that prohibits sex discrimination and sexual misconduct, including sexual harassment, sexual assault, dating violence, domestic violence and stalking. Resources are available if you or someone you know needs assistance. Any faculty or staff member you speak to is required to report the incident to the Title IX Coordinator. Please know, however, that your information will be kept private to the greatest extent possible. You will not be required to share your experience. If you want to speak to someone who is permitted to keep your disclosure confidential, please seek assistance from the Florida Polytechnic University Ombuds Office, BayCare's Student Assistance Program, 1-800-878-5470 and locally within the community at Peace River Center, 863-413-2707 (24-hour hotline) or 863-413-2708 to schedule an appointment. The Title IX Coordinator is available for any questions to discuss resources and options available.

Academic Integrity

Violations of <u>academic integrity regulation</u> include actions such as cheating, plagiarism, use of unauthorized resources (including but not limited to use of Artificial Intelligence tools), illegal use of intellectual property, and inappropriately aiding other students. Such actions undermine the central mission of the university and negatively impact the value of your Florida Poly degree. Suspected violations will be fully investigated, possibly resulting in sanctions up to and including expulsion from the university.

Recording Lectures

Students may, without prior notice, record video or audio of a class lecture for a class in which the student is enrolled for their own personal educational use. Recordings may not be used as a substitute for class participation or class attendance. Recordings may not be published or shared in any way, either intentionally or accidentally, without the written consent of the faculty member. Failure to adhere to these requirements is a violation of state law (subject to civil penalty) and the student code of conduct (subject to disciplinary action). Recording class activities including, but not limited to, lab sessions, student presentations (whether individually or part of a group), class discussion (except when incidental to and incorporated within a class lecture), and invited guest speakers is **prohibited**.

Academic Support Resources

- **Library**: Students can access the Florida Polytechnic University Library through the University website and <u>Canvas</u>, on and off campus. Students may direct questions to <u>library@floridapoly.edu</u>.
- Tutoring and Learning Center: The Tutoring and Learning Center (The TLC) provides tutoring to all Florida Poly students who may need additional academic support. The TLC is staffed by students who have excelled in the courses they tutor. They offer support by reviewing concepts and materials from class, clarifying points of confusion and providing assistance with learning strategies. While the focus of TLC is to provide support to students in freshman-level courses,

upper-level courses are also tutored at the Center. The TLC is located in the IST Commons (second floor).

- Knack Tutoring: Students looking for additional assistance outside of the classroom are advised to consider working with a peer tutor through Knack. Florida Polytechnic University has partnered with Knack to provide students with access to verified peer tutors who have previously aced this course. To view available tutors, visit floridapoly.joinknack.com and sign in with your student account.
- Academic Success Coaches: All students at Florida Poly are assigned an Academic Success
 Coach. Your Academic Success Coach can assist you with academic success strategies. Please
 visit the Student Success Center on the second floor of the IST building to meet with an
 Academic Success Coach.
- Writing Center: Located on the second floor of the IST (2059/2061), the Writing Center helps students to develop their writing and presentation skills. Consultations are available in person and virtually. For more detail, visit floridapoly.edu/writing center.

- Academic Success Coaches: All students at Florida Poly are assigned an Academic Success Coach. Your Academic Success Coach can assist you with academic success strategies. Please visit the Student Success Center on the second floor of the IST building to meet with an Academic Success Coach.
- Writing Center: Located on the second floor of the IST (2059/2061), the Writing Center helps students to develop their writing and presentation skills. Consultations are available in person and virtually. For more detail, visit floridapoly.edu/writing center.