FLORIDA POLYTECHNIC UNIVERSITY

EGN 4905 - Autonomous Systems Self Driving Cars

Project Based, Cross Disciplinary Course

Dr. Dean Bushey Mar 15, 2017

FLORIDA POLY

What is your vision?

What is your vision?

FLORIDA

POLY

FLORIDA POLY

What is your vision?

FLORIDA POLY

What is your vision?

FLORIDA
POLYAutonomous Systems Car CoursePage 18POLYSpring 2017 Florida Polytechnic University

Hands-on intense semester program focused on demonstrating fast autonomous navigation in complex environment (mini Grand Prix)

- 3 teams (7 students per team)
- Each team with RACECAR* (Sensors, NVIDIA computer, ROS)
- *Build...Move...Explore...Learn...Race!* In project challenges

Demonstrate advanced capabilities of autonomous self-driving car!

* Rapid Autonomous Complex-Environment Competing Ackermann-steering Robot

Course Overview

• 11 Computer Science

- 6 Electrical Eng
- 3 Computer Eng
- 3 Mechanical Eng
- 1 Transportation MS

Engineering Independent Study –

Fills

- Elective Requirements for EE ME CE
- Software engineering requirement for CS

- 2 Freshmen
- 10 Sophomore
- 10 Junior
- 1 Senior
- 1 Grad Student

PROJECT BASED Multi Disciplinary

Automated/Connected Vehicle Requirements

- Diverse redundant sensors (optical, infrared, radar, & laser)
- Short range comm systems
- Long-range comm
- Navigation, mapping
- Automated controls (steering, brakes, nav, etc)
- Servers, software & power w/high reliability
- Testing, MX & repair infrastructure

Audi RS 7 piloted driving concept

Driver assistance systems 10/14

Front camera:

- Audi active lane assist
- ACC with Stop&Go function
- Speed limit display Audi pre sense / front / plus
- Audi adaptive light

Ultrasonic sensors at front:

 ACC with Stop&Go function Parking system plus with front and rear camera Park assist with display of surroundings

Infrared camera:

 Night vision assistant with highlighting of detected pedestrians

Ultrasonic sensors at side:

Front, rear and top-view cameras:

 Parking system plus with front and rear camera Park assist with front and rear camera

(000)

Ultrasonic sensors at rear:

 Parking system plus with front and rear camera Park assist with display of surroundings

Rear radar sensors:

 Audi side assist Audi pre sense rear / plus

Crash sensors:

- Front protection adaptivity
- Side protection Rear impact protection

Front radar sensors:

 ACC with Stop&Go function Audi pre sense / front / plus

REGULATORY and LEGAL FRAMEWORK – Lengthy?

Park assist with display of surroundings

RACECAR 2.0

Board of Trustees Meeting 3.15.17 Page 18

Syllabus Outline

Accomplished in 5 units/Challenges

- Build: integrate all sensors, hardware, and software
- Move: basic motion control & simple obstacle avoidance
 DRAG RACE
- Explore: vision based blob, target, & object detection
 Cone Weave
- Learn: mapping, localization, and road network navigation
 MAP the IST
- Race: brings all the pieces together for a final competition
 GRAND PRIX

Materials drawn from prior MIT and Lincoln Lab courses

Build...Rove...Explore...Learn...Race!

Topics Covered

Board of Trustees Meeting 3.15.17 Page 20

- Autonomous Vehicle Hardware requirements
- Robot Operating Systems and Real Time
 Operating Systems
 - Publish and Subscribe
- Embedded Systems Control
- Perception
 - Computer Vision
 - Localization
 - Mapping
- Algorithmic Planning
- Machine Learning
- Fundamentals of Systems Engineering

QUESTIONS?

BACKUP SLIDES

FLORIDA POLY Candidate Research / Enrichment Page 23 Projects

Projects	Research Elements
Find and chase another race car in an open environment	Object (vehicle) recognition, tracking, pursuit planning
Follow a race car with small drone	Unmanned aerial vehicle embedded systems and control
Map an indoor environment quickly and look for a hidden object	Simultaneous localization and mapping, exploration strategies
Navigate a dense set of traffic cones using computer vision only	Computer vision object (cone) recognition and obstacle avoidance
Detect markers on the ground and drive over as many markers as possible while going with a constant forward speed	Low-latency computer vision and high-speed planning
Find a parking space and parallel park with and without a trailer	Non-holonomic motion planning
Formation driving (uses spare cars)	Multi-robot coordination and planning
Push boxes between storage locations	Manipulation and high-DOF motion planning

Unbundling The Automobile

