
FLORIDA POLYTECHNIC

COUNTING M&MS
What’s Possible with Computer Vision

Overview:

In this lesson we will learn about the python language and OpenCV. You will understand how to create a
program that will count the color of M&Ms in a video feed. This will be done by using digital image
processing techniques such as color conversion, masking, dilation, and thresholding.

Learning Outcomes

• Identify and recognize the basics concepts of computer vision.
• Understand and demonstrate the basic functions of masking and thresholding.

• Find and test upper and lower bounds for color detection.

Materials
• Browser with Google
• Google Account

• Code and Files from lesson downloads

• Google Colaboratory
• Peko Color Converter Site
• Computer Vision Vocabulary Sheet

Background

The Contour:

Contours can be explained as a line/curve surrounding points of an image that share similar
color and intensity values. This is very helpful when performing obstacle detection and obstacle
recognition. In order to use contouring in an efficient way, it is best to use a binary image, as
findContour() works better on binary images. The binary image we will be using is our mask, which will
be discuss later on in the document.

One important property of contours is hierarchy, this is where a contour is within a contour. The
outer contour will be considered the parent contour and the inner contour will be considered the child
contour. There are many ways to place the contours in a hierarchy, contours can have the same
hierarchy, or they can have different hierarchy. For our example will be using RETR_EXTERNAL, which
only returns the parent contours, thus minimizing the contours within a contour.

https://colab.research.google.com/

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

Another property of contours that will help in machines running with less memory is

approximation. We can use approximation by only using four points to draw a contour; normally

contours are drawn with 734 points. To use no approximation, you would use

cv2.CHAIN_APPROX_NONE(figure on the left)and to use four-point approximation you would

use cv2.CHAIN_APPROX_SIMPLE(figure on the right).

The putText() Function:

The putText() function is used both in the contourColor() function and counterText() function.
The putText() function is used to place text onto an image. The function uses various parameters to
place the text of your choice onto the image. The require parameters that were used in our example
are: image, text, org, font, font scale, color, and thickness.

- Image: this is the image that we are placing the text in
- Text: this is the text that we are placing onto the image
- Org: this is the bottom left corner of the text box and can be used to place the text anywhere

on the image.
- Font: this is the font style of the text. FONT_HERSHEY_PLAIN, for example.
- Font Scale: this is the font size of the text.
- Color: this is the color of the text. For our example we passed (0, 0, 0) for RGB black.
- Thickness: this is how thick the text is.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

Thresholding and Masking:

Two important techniques that were used for color detection were thresholding and masking.

Thresholding is used in conjunction with masking to segment parts of an image, such as color. This is

done by applying limits onto the image and applying a light color (white) to areas that fall within the

limits and applying a dark color (black) to areas that fall outside the limits. In our example we use HSV

color limits to separate pixels that fell within the specific color range, we then masked the image and

applied a dark blue to areas outside the HSV range and a yellow color to areas that fell within the color

range; this were then passed to the contourColor() function to create a contour.

The Activity

In this activity you will learn the basics of contours and placing text on an image. You will also

learn to apply thresholding limits to detect specific colors and your results on a test image that has been

specifically calibrated for the threshold values.

Setting Up Google Colab

Download the files associated with this lesson and save them in a place of your choice. Once

downloaded go to Google Colab, and sign in with your google account. Go to “File” on the top left and

choose “Open notebook”, from there click the “Upload” option, then click “choose file”, and choose the

file named “Counting_M&Ms_Simple_Fill_In.ipynb”. Once open, click the file icon on the left side bar of

your colab notebook (Figure A); your screen should now look like Figure B. Once in the files menu

choose the upload file icon (Figure C) and upload all the images under the “M&M images” folder in the

Figure A. Figure B. Figure C.

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjw4K_nhbrvAhUFSTABHV8fB3AQFjAAegQIARAE&url=https%3A%2F%2Fcolab.research.google.com%2F&usg=AOvVaw3A5aPK2kLFzKOzb6sOckVw

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

downloaded files. Finally, go to “Runtime” on the top left and click “Run all”(Figure D), you can also.

Individually run each line by clicking the play icon when you hover over the “[]” icon on each code

segement(Figure E). When finished, your result should look like Figure F; where the green contour is not

placed correctly, this where our activity begins!!

Detecting Green!

Navigate through the code until you find the “Try it yourself” section. There you will find a

section of code that defines the lower and upper limits of the HSV scale for green; we will be working

with the lower limits – which are set to [0, 0, 0], where the first 0 is the place holder for Hue(H), the

second is the place holder for Saturation(S), and the third is the place holder for Value(V). To help us

find the correct limits, we will be using Peko-Step, an online website that converts RGB to HSV and

allows us to manipulate HSV values. HSV is a color scale that uses Hue which represents the color,

Saturation which represent the lightness of the color, and Value which measures the darkness of the

color. This scale is widely used in color detection because of the number of shades you can achieve with

each color.

I suggest to place the Google Colab tab to the left and the Peko-Step tab to the right(Figure G),

this way you are able to quickly access both pages. In Peko-Step, before we begin using the HSV slide

bars we need to ensure that the range for S and V is set to 0…255. To do this, go on the drop down

menu for “range(S,V)” and select 0…255(Figure H). Another thing to note is that the H range is set to

0…360, however python measures hue from 0…180. Because there is no dropdown menu to set H range

to 0…180 in Peko-Step, we need to divide the H value by two when we place it onto Google Colab; for

example – if your H is 96 in Peko-Step, then you will put 48 as your H value in the code.

Figure D. Figure E. Figure F.

Figure G. Figure H.

https://www.peko-step.com/en/tool/hsvrgb_en.html

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

To begin, it is good to have a start point, and thus the best start point is to begin by displaying

green. To do this, in Peko-Step, slide the RGB values(Figure I) so that Red(R) is set to 0, Green(G) is set to

255, and Blue(B) is set to 0. Now look at the HSV values, you can now notice that the values are set as

followed: 120 for H, 255 for S, and 255 for V. These values are also the same as our upper limits in the

code: 60 (120 / 2) for H, 255 for S, and 255 for V. Now that we have starting point, first begin by

lowering H until the color represented is no longer a type of green(this is when the color starts looking

more yellow), then start lowering S and V value, but still keeping a green shade. Continue to slide the

scales, while maintaining a shade of green. Run the code multiple times until the green contour is

correctly place around the green M&M, as shown in Figure J. If you are experiencing difficulty, feel free

to open the “Counting M&Ms Answer Key.ipynb”, using the same first steps from the Setting Google

Colab section.tt

Assessment

1. Why are masking and thresholding so important to computer vision?

2. What does each component of the HSV represent?

3. How is HSV use to detect colors, such as green?

4. Could you use other color scales, like RGB, to detect colors? Are there pros and cons?

5. Were you able to detect green? What parameters did you use?

Figure I.

Figure J.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

Additional Resources

1. Counting M&Ms Library Imports (Code)
2. Images (3)
3. Counting M&Ms Vocabulary list

© Florida Polytechnic University, 2021. No part of the materials available may be copied, photocopied,

reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without

prior written consent of Florida Polytechnic University. Any other reproduction in any form without the permission

of Florida Polytechnic University is prohibited.

Created and Designed by Juan Forero, Computer Engineering class of 2021

Thank you for downloading this lesson, please take a moment to complete our survey

https://en.wikipedia.org/wiki/HSL_and_HSV
https://flpoly.qualtrics.com/jfe/form/SV_8kOSAQycoHNXKyF

	Learning Outcomes
	Materials
	Background
	The Contour:
	Thresholding and Masking:
	The Activity
	Setting Up Google Colab
	Detecting Green!
	Assessment
	Extensions or Additional Resources

