

FLORIDA POLYTECHNIC

GUIDED INTRODUCTION TO PROGRAMMING
Lesson 4: Loops

Overview:

This is the final lesson on the basics of programming in C. Upon completion of this programming unit,

students should be able to do a variety of simple problems that utilize math, printing and scanning, and

if and else statements. The final lesson will be on loops which are simple functions but highly powerful

because they cut down on programming time if you need to check or add together vast quantities of

items.

Learning Outcomes

-Students will understand and explain what a loop is.

 -Students will implement loops in coding practice.

- Students will assess and solve complex problems using loops.

 -Students will build complex problems including detecting if a number is prime.

Materials

- Computer with internet connection

- Website for the online compiler https://replit.com/languages/c

- Vocabulary list

The Activity

Part 1

First, students should define what a loop is. In simple terms, a loop is a function that, similar to and if

and else statement, takes a condition and repeats a function or set of functions in the loop until that

condition is met. It is like running laps around a track, if you need to run 4 laps, you begin to run, and

you complete your first lap. You have not reached 4 laps yet, so you do it again, and again, and again

until you reach 4 laps. What you just did was a loop, you completed a function, but the condition was

not met so you ran it again until the condition was met.

Once you understand what a loop is and how it works, next compare the types of loops. There are many

types of loops but today the focus will be on two types, the for loop and the while loop. Though a for

loop and a while loop have the same function their use is determined by whatever task you are

https://replit.com/languages/c

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

programming or to general preference. Some programmers make their choice based on which one they

feel more comfortable using. In general, a while loop is used if you want an action to repeat itself until a

certain condition is met i.e., if statement. A for loop is used when you want to iterate through an object.

i.e., iterate through an array. You should use a for loop when you know how many times the loop should

run. If you want the loop to break based on a condition other than the number of times it runs, you

should use a while loop.

First, examine while loops. A while loop does a task while a condition is true.

For example: While (X<10){ X++; }

This translates as:

While X is less than 10 add 1 to X every iteration.

An iteration is repetition of a computer procedure, so in simple terms it is just the program repeating

itself until completion.

So then, what can be done with a while loop? Like any loop you can use it to repeat a task until a

condition is met. A simple example of this is like when you are playing a video game and you are holding

down a button to do an action. The programmers of the game can make one press of the button do one

action or they can use a while loop to detect when you let go of the button to cancel the action.

However, there is much more advanced programming involved in that function that will not be covered

in this lesson. For now, we will examine at a very famous type of while loop, the prime number solver.

You may have learned about prime numbers in class but even if you have not you can continue with this

lesson. In simple terms, prime numbers are numbers that are not a product of two smaller numbers.

For example, 17 is a prime number because the only numbers that can multiply to get 17 is 17 and 1.

 In contrast 18 is not a prime number as you can multiply 3 and 6 to get 18.

How can we tell whether a number is prime using a while loop? Without a loop it is very time consuming

to determine if a number is prime because without a loop you would have to check each number

manually. This method is not efficient. Code can be used to create a program to detect prime numbers.

Part 2

Next, look at the code below. This code is a program for detecting prime numbers.

#include <stdio.h>

int main(void) {

 int x = 0;

 //We start count at 2 because every number is divisible by 1

 int count = 2;

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

 printf("Please enter a number: ");

 scanf("%d", &x);

 //Puts is just used to create a new line easier

 puts("");

 printf("This while loop will detect if %d is prime.\n", x);

 while(count < x){

 if(x % count == 0){

 printf("%d is divisible by %d, %d is not prime.\n", x, count, x);

 //Return 0 is used here to stop the program as it has detected that x is

not prime.

 return 0;

 }else{

 printf("%d is not divisible by %d.\n", x, count);

 count++;

 }

 }

 printf("Based on the while loop, %d is a prime number.\n", x);

 return 0;

}

When you input a number, this code will tell you the numbers it is divisible by. The code will also tell

you if that number is prime. For the sake of consistency, in the example below the same numbers are

used as a test from earlier. Image 1 shows the output of the program when you input 18:

Image 1

Image 1 shows the code was able to detect if 18 was prime early in the program because 18 is divisible

by 2.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

Next, look at the output in Image 2 below when you enter 17:

Image 2

There is a reason why the code only runs the program up to the input number (17). This is because, like

the number 1, we know that whatever number we put in is divisible by itself so we do not need to check

that, otherwise it would break the logic in the loop and would have to rewrite some parts of the

program.

Feel free to copy the code above into the online compiler to try it out for yourself.

Part 3
Most of the time the different types of loops can do the same tasks even with a little variation in the

code, but if done correctly will have the same output. After you learn about the for loop and how it is

written, try writing a prime detector program using the for loop, use the code provided above as a guide

if you are still a little fuzzy on the math.

First, a for loop has the same function as a while loop, as they are both loops. However, a for loop

typically operates with counters and mostly numbers as conditions. This is different from true or false

logic statements that were introduced in the logic lesson.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

The best way to explain is to go through a quick example:

A for loop has three things it needs when making the loop and those are: an initialization, a condition,

and an updater.

1. An initialization is the creation of a counter such as: int count = 0; we use this to iterate or loop

through a set number of times based on the condition.

2. The condition is the same as a while loop, an example of a for loop condition could be: count <

20.

3. Without an updater the loop would either error out or just go on indefinitely, therefore the

count needs to be updated with every pass through the loop with something like: count++ which

just adds 1 to count.

Given these three circumstances, a for loop will look something like this:

for (initialization; condition; updater) {

Body of Loop

}

As for actual code, just print hello 10 times:

#include <stdio.h>

int main(void) {

 for(int i = 0; i < 10; i++){

 printf("Hello\n");

 }

 return 0;

}

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

Image 3

In Image 3, you can see the program has printed out “Hello” 10 times. This is far easier than writing the

print function 10 times manually. An important thing to note for both loops is that they both need an

updater. The for loop has its updater in the creation of the function like what is shown above in Image 3.

However, the while loop does not have its updater in the creation of the function, therefore we need an

updater in the body of the function. If there is no updater in either function the loop will just go on

indefinitely which is why the code needs to have an appropriate updater.

Assessment

1. Use a for loop to print out all the numbers from 1 to 1000.

2. Use a while loop to print out all the numbers from 1 to 1000.

3. If a for loop that looks like this:

For(int I = 0; I <20; I++)

{Printf(“%d\n”, I);}

How many times will the loop run through?

4. Use a for loop instead of a while loop with the code used to find prime numbers in Part 2.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

Extensions and/or Additional Resources

- Link to Lesson 4 Video

- Link to Programming Vocabulary

- https://www.w3schools.com/

- https://www.geeksforgeeks.org/c-programming-language/

- https://replit.com/languages/c

Created By:
Ryan Floyd, Computer Science, ‘22

© Florida Polytechnic University, 2021. No part of the materials available may be copied, photocopied,

reproduced, translated, or reduced to any electronic medium or machine-readable form, in whole or in part, without

prior written consent of Florida Polytechnic University. Any other reproduction in any form without the permission

of Florida Polytechnic University is prohibited.

Thank you for downloading this lesson, please take a moment to complete our survey

https://www.w3schools.com/
https://www.geeksforgeeks.org/c-programming-language/
https://replit.com/languages/c
https://flpoly.qualtrics.com/jfe/form/SV_8kOSAQycoHNXKyF

