

FLORIDA POLYTECHNIC

GUIDED INTRODUCTION TO PROGRAMMING
 Teacher’s Guide Lesson 4: Loops

Guided Introduction to Programming

Lesson 4: Loops

Teacher’s Guide

Welcome back to the Teachers Edition of a Guided Intro to Programming. This is the final lesson

on the basics of programming in C and after this you should be able to do a variety of simple

problems that utilize math, printing and scanning, and if and else statements. Today’s lesson will

be on loops which are simple functions but highly powerful as they cut down on programming

time if you need to check or add together vast quantities of items.

First, students should define what a loop is. In simple terms, a loop is a function that, similar to

and if and else statement, takes a condition and repeats a function or set of functions in the loop

until that condition is met. It is like running laps around a track, if you need to run 4 laps, you

begin to run, and you complete your first lap. You have not reached 4 laps yet, so you do it

again, and again, and again until you reach 4 laps. What you just did was a loop, you completed

a function, but the condition was not met so you ran it again until the condition was met.

Once you understand what a loop is and how it works, next compare the types of loops. There

are many types of loops but today the focus will be on two types, the for loop and the while loop.

Though a for loop and a while loop have the same function their use is determined by whatever

task you are programming or to general preference. Some programmers make their choice based

on which one they feel more comfortable using. In general, a while loop is used if you want an

action to repeat itself until a certain condition is met i.e., if statement. A for loop is used when

you want to iterate through an object. i.e., iterate through an array. You should use a for loop

when you know how many times the loop should run. If you want the loop to break based on a

condition other than the number of times it runs, you should use a while loop.

As a note to what kinds of loops there are, we have: do while loops, while loops, for loops, and

recursive loops which occur when you call a function recursively. This is just in case a student

asks what other loops there are.

A while loop does a task while a condition is true. For example: While (X<10){ X++; }.

What I just wrote in terms we will understand is while X is less than 10 add 1 to X

every iteration. An iteration is repetition of a computer procedure, so in simple terms it is just the

program repeating itself until completion. You may be asking right now, “What can I do with a

while loop?”, and that is a good question. Like any loop you can use it to repeat a task until a

condition is met. A simple example of this is like when you are playing a video game and you

are holding down a button to do an action. The programmers of the game can make one press of

the button do one action or they can use a while loop to detect when you let go of the button to

cancel the action. However, there is much more advanced programming involved in that so we

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

will save that for another time. For now, let us look at a very famous type of while loop, the

prime number solver.

To show off the for loop, I want to use a simple prime number solver, if your students have not

yet learned about prime numbers, I have included an explanation of what prime numbers are

below. Please read over it and if you deem it necessary, please feel free to explain in your own

way what prime numbers are. I know everyone learns math differently, but this was the best

technical definition I could come up with.

First, examine while loops. A while loop does a task while a condition is true.

For example: While (X<10){ X++; }

This translates as:

While X is less than 10 add 1 to X every iteration.

An iteration is repetition of a computer procedure, so in simple terms it is just the program

repeating itself until completion.

So then, what can be done with a while loop? Like any loop you can use it to repeat a task until a

condition is met. A simple example of this is like when you are playing a video game and you

are holding down a button to do an action. The programmers of the game can make one press of

the button do one action or they can use a while loop to detect when you let go of the button to

cancel the action. However, there is much more advanced programming involved in that function

that will not be covered in this lesson. For now, we will examine at a very famous type of while

loop, the prime number solver.

You may have learned about prime numbers in class but even if you have not you can continue

with this lesson. In simple terms, prime numbers are numbers that are not a product of two

smaller numbers.

For example, 17 is a prime number because the only numbers that can multiply to get 17 is 17

and 1.

In contrast 18 is not a prime number as you can multiply 3 and 6 to get 18.

How can we tell whether a number is prime using a while loop? Without a loop it is very time

consuming to determine if a number is prime because without a loop you would have to check

each number manually. This method is not efficient. Code can be used to create a program to

detect prime numbers.

#include <stdio.h>

int main(void) {

 int x = 0;

 //We start count at 2 because every number is divisible by 1

 int count = 2;

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

 printf("Please enter a number: ");

 scanf("%d", &x);

 //Puts is just used to create a new line easier

 puts("");

 printf("This while loop will detect if %d is prime.\n", x);

 while(count < x){

 if(x % count == 0){

 printf("%d is divisible by %d, %d is not prime.\n", x, count, x);

 //Return 0 is used here to stop the program as it has detected that x is
not prime.

 return 0;

 }else{

 printf("%d is not divisible by %d.\n", x, count);

 count++;

 }

 }

 printf("Based on the while loop, %d is a prime number.\n", x);

 return 0;

}

When you input a number, this code will tell you the numbers it is divisible by. The code will

also tell you if that number is prime. For the sake of consistency, in the example below the same

numbers are used as a test from earlier. Image 1 shows the output of the program when you input

18:

As you can see, the code was able to detect if 18 was prime early in the program because 18 is

divisible by 2.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

There is a reason why the code only runs the program up to the input number (17). This is

because, like the number 1, we know that whatever number we put in is divisible by itself so we

do not need to check that, otherwise it would break the logic in the loop and would have to

rewrite some parts of the program.

An important thing to look for when your students are making loops is the condition they

provide. Say for instance I wanted to print every number up to 17 starting with 1. The proper

way to write it would be X <= 17, which will start at X = 1 and go until it gets to 17. However,

if they write it as X < 17 then it would only go up to 16. A small but important detail when trying

to get proper inputs.

Most of the time the different types of loops can do the same tasks even with a little variation in

the code, but if done correctly will have the same output. After you learn about the for loop and

how it is written, try writing a prime detector program using the for loop, use the code provided

above as a guide if you are still a little fuzzy on the math.

Here is the code for the Prime Number For Loop:

#include <stdio.h>

int main(void) {

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

int x = 0;

 printf("Please enter a number to see if it is prime: ");

 scanf("%d", &x);

 puts("");

 for(int i = 2; i < x; i++){

 if(x % i == 0){

 printf("%d is not prime as it is divisible by %d\n", x, i);

 return 0;

 }

 }

 printf("%d is prime.\n", x);

 return 0;

}

First, a for loop has the same function as a while loop, as they are both loops. However, a for

loop typically operates with counters and mostly numbers as conditions. This is different from

true or false logic statements that were introduced in the logic lesson.

The best way to explain is to go through a quick example:

A for loop has three things it needs when making the loop and those are: an initialization, a

condition, and an updater.

1. An initialization is the creation of a counter such as: int count = 0; we use this to iterate

or loop through a set number of times based on the condition.

2. The condition is the same as a while loop, an example of a for loop condition could be:

count < 20.

3. Without an updater the loop would either error out or just go on indefinitely, therefore the

count needs to be updated with every pass through the loop with something like: count++

which just adds 1 to count.

Given these three circumstances, a for loop will look something like this:

for (initialization; condition; updater) {

Body of Loop

}

Keep in mind about how a condition is written. If we changed what is below to i <= 10 without

changing the initial value of i, then the loop would operate 11 times rather than 10 which is not

our desired output.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

As for actual code, just print hello 10 times:

#include <stdio.h>

int main(void) {

 for(int i = 0; i < 10; i++){

 printf("Hello\n");

 }

 return 0;

}

You can see the program has printed out “Hello” 10 times. This is far easier than writing the

print function 10 times manually. An important thing to note for both loops is that they both need

an updater. The for loop has its updater in the creation of the function like what is shown above

in Image 3. However, the while loop does not have its updater in the creation of the function,

therefore we need an updater in the body of the function. If there is no updater in either function

the loop will just go on indefinitely which is why the code needs to have an appropriate updater.

A more practical application of loops is the calculation of a factorial. I am certain that you have

not seen a factorial yet, but if you have that is great. The factorial is an important mathematical

concept that comes up in the more rigorous high school math classes and in college, so it is good

to get a foundation for how it works early. A factorial is the product of all positive integers less

than or equal to a given positive integer and denoted by that integer and an exclamation point.

For example, 5 factorials, looks like 5! is 5*4*3*2*1 = 120. Not too complicated, we can make

this process easy on a computer with a simple for loop.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

Similar to explaining prime numbers, please look over the explanation of a factorial as your

students may need a different explanation to fully understand what a factorial is.

The code for a factorial, is down below:

#include <stdio.h>

int main(void) {

int x = 0;

int sum = 1;

printf("Enter a number and this program will return its factorial.\n");

scanf("%d", &x);

 for(int i = 1; i <= x; i++){

 printf("%d * %d = ", sum, i);

 sum = sum * i;

 printf("%d\n", sum);

 }

printf("%d factorial is %d", x, sum);

 return 0;

}

As you can see that code works, feel free to copy that code and try it out. Keep in mind you can

only do factorials up to a certain number because after that the number becomes so big that the

computer cannot compute it properly. This is due to memory sizes and other more complicated

architecture properties of modern computers.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

As a bit of practice try and do a factorial computation with a while loop, as it is possible to do so.

Feel free to use the code above as a reference.

The code for the Factorial While loop is:

#include <stdio.h>

int main(void) {

 int x = 0;

 int sum = 1;

 printf("Please enter a number to see its factorial: ");

 scanf("%d", &x);

 puts("");

 while(x > 0){

 printf("%d * %d = ", sum, x);

 sum = sum * x;

 printf("%d\n", sum);

 x--;

 }

 return 0;

}

With that said and done you have completed this lesson,

Congratulations

Glossary

Counter – a variable used in loops to keep track of how many iterations we have gone through,

used to close loops once we reach a certain number of iterations.

Efficient – efficiency is a peak level of performance that uses the least number of inputs to

achieve the highest amount of output.

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

Factorial- the product of an integer and all the integers below it

Iteration - the repetition of a computer procedure.

Initialization - set (variables, counters, switches, etc.) to their starting values at the beginning of a

program.

Loop - a function that, like and if and else statement, takes a condition and repeats a function or

set of functions in the loop until that condition is met.

Prime Number - numbers that are not a product of two smaller numbers, i.e., 5, 7, 13, etc.…

Updater – code that updates the counter with every pass through the loop.

Assessment

1. Use a for loop to print out all the numbers from 1 to 1000.

2. Use a while loop to print out all the numbers from 1 to 1000.

3. If a for loop that looks like this:

For(int I = 0; I <20; I++)

{Printf(“%d\n”, I);}

How many times will the loop run through?

4. Use a for loop instead of a while loop with the code used to find prime

numbers in Part 2.

Extensions and/or Additional Resources

Remember to keep practicing your code and if you are interested use these links to keep learning

past what we have done or just feel free to look up any programming sites that can teach you as

there are thousands of great sites that have comprehensive lessons and descriptions on how to

code.

- Link to Lesson 4 Video

FLORIDAPOLY.EDU/OUTREACH | 863-333-0833 | 4700 Research Way, Lakeland, FL 33805

- Link to Programming Vocabulary

- https://www.w3schools.com/

- https://www.geeksforgeeks.org/c-programming-language/

- https://replit.com/languages/c

Thank you for taking the time to learn code with me as your guide and I hope to see you coding

in the future.
Created By:
Ryan Floyd, Computer Science, ‘22

© Florida Polytechnic University, 2021. No part of the materials available may be copied, photocopied,

reproduced, translated or reduced to any electronic medium or machine-readable form, in whole or in part, without

prior written consent of Florida Polytechnic University. Any other reproduction in any form without the permission

of Florida Polytechnic University is prohibited.

Thank you for downloading this lesson, please take a moment to complete our survey

https://www.w3schools.com/
https://www.geeksforgeeks.org/c-programming-language/
https://replit.com/languages/c
https://flpoly.qualtrics.com/jfe/form/SV_8kOSAQycoHNXKyF

